
Comparing BFS, Genetic Algorithms, and the
Arc-Constancy 3 Algorithm to solve N Queens and

Cross Math
Peter Irvine

College of Science And Engineering
University of Minnesota

Minneapolis, Minnesota 55455
Email: irvin124@umn.edu

Abstract—We compared Breadth First Search, Genetic Algo-
rithms, and AC3 Algorithms with the test cases of N Queens
and Cross Math. To do this, we created a bash script that ran
a large amount of experiments with different constraints on the
problems and logged CPU usage, time to completion, and memory
consumption of the program and stored the results into a text
file to be read later. We found that our genetic algorithm was
not quite optimized and was not that useful as BFS ran in a
similar if not better time. For future work, we plan to make the
algorithms more efficient and rerun most of our tests.

I. INTRODUCTION

Puzzles have always been a great source of entertainment
for people, whether it has been casual or competitive play or
just a good time waster while trying not to do homework.
There are many different kinds of puzzles in existence today
but in this paper we will be focusing on just two: N Queens
and Cross Math.

II. BACKGROUND

A. Puzzles

1) N Queens: N Queens is a game played on a chessboard
but the only pieces that are used are Queens. The goal of the
game is to place as many queens as there are rows. However,
the rules of chess still apply, meaning that you can not place
a queen where she will be captured by another queen on the
board. Both a valid board and an invalid 4x4 board can be
seen below:

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

A Valid N Queens Board (4x4)

4 0ZQZ
3 Z0Z0
2 QZ0L
1 ZQZ0

An Invalid N Queens Board (4x4)

2) Cross Math: Cross Math is a game like Sudoku, however
the board is set up a bit differently. Instead of just placing
numbers on a grid and making sure they don’t repeat in a
column, row, or box the player has to solve equations that
appear on the board. In Cross Math, you do there are no
repeated numbers, so for a 3x3 board, the numbers one through
nine are only once. The goal of the game is to solve the
equations in the rows and columns. The boards are laid out so
that in between the blank boxes, there are operators that must
be used to get the number after the equals sign at the end of
the row or column.

In Cross Math, the rules of operations (PEMDAS - Paren-
thesis, Exponents, Multiplication, Division, Add, Subtract) do
not apply. Instead, it proceeds to go left to right or top to
bottom. This greatly simplifies the logic that is needed to solve
these puzzles. Cross Math puzzles can range in size from a
2x2 board to as large as you want to make them, but for our
purposes, we only tested up to a 6x6 board.



An Unsolved Cross Math Board

A Solved Cross Math Board

B. Algorithms

1) Breadth First Search (BFS): Breadth First Search (BFS)
is a very simple search algorithm for graphs. It works by
”systematically explores the edges of G to discover every
vertex that is reachable from s. It computes the distance
(smallest number of edges) from s to each reachable vertex. It
also produces a breadth-first tree with root s that contains all
reachable vertices. For any vertex reachable from s, the simple
path in the breadth-first tree from s to corresponds to a shortest
path from s to in G, that is, a path containing the smallest
number of edges. The algorithm works on both directed and
undirected graphs”[4]. It is also called BFS because instead
of fully exploring branches like a depth first search, it only
explores one ”level” at a time.

This means that when BFS finds a node, it finds the
most efficient path to that node, because it has visited
all other nodes up to that level and hasn’t found the
desired node. Below is the pseudo code for BFS[4]:

[4]

We used BFS as a benchmark for our tests, this a brute-force
attempt to solve the problem. In theory, this method should
take the longest and use the greatest amount of memory and
CPU.

2) Genetic Algorithms: A Genetic Algorithm is an
algorithm that makes use of a heuristic to reduce the
population of your answer. It does this by mutating the
”organisms” or solutions of the problem. To do this it
compares where it is in relation to where it needs to be, and
adapts to try to best mirror the goal state. The mutations
to the population are done in what’s called a heuristic
algorithm. The algorithm should terminate when it equals
the goal state, which for this purpose, is when the puzzle is
solved. Below is the pseudocode for our genetic algorithm:

[4]

We tested the Genetic Algorithm because we wanted to
investigate an algorithm that was able to adapt to the current
state of the puzzle while hopefully reducing the possibilities
the algorithm must go through. In theory, this algorithm
should run faster than BFS because it actively reducing the
amount of options the algorithm has to go through.

3) Arc-Consistency 3 (AC3): Arc-Consistency 3 or AC3 is
a constraint satisfaction algorithm; it works by satisfying a
myriad of constraints that are passed into it. It operates with
Variables, Domains, and Constraints. A variable can take any
of several discrete values; the set of values for a particular
variable is known as its domain. A constraint is a relation



that limits or constrains the values a variable may have. The
constraint may involve the values of other variables.

AC3 works great for small problems that don’t have many
constraints and only one solution. This is why we decided not
to implement AC3 for N Queens. There are many different
solutions for a given N Queens problem and AC3 would not
be able to return a solved puzzle. As it is, AC3 was not able
to return a completely solved Cross Math puzzle - only parts
of the puzzle are able to be solved the rest of the squares have
a greatly reduced set of numbers that can go there.

Below is the pseudocode for an AC3 Algorithm

4) Previous Research: Genetic algorithms have been used
for many things, from optimization to learning rules to sim-
ulating life forms. It has quite the application base, and one
of those applications is solving puzzles. Ayad M. Turky and
Mohd Sharifuddin Ahmad from the University of Anbar, Iraq
used a genetic algorithm to solve the N Queens problem [1].
What they found was that they could solve a 2000x2000
N Queens board (on average) in about 1023 seconds. They
concluded that N Queens is a problem that cannot be reason-
ably solved by a deterministic model and need some sort of
heuristic to solve properly [1].

Rok Sosile and Jun Gu[2] also decided to look at the N
Queens problem. They however were looking at the total
number of moves it would take to solve any given problem.
They broke it into steps, the first step was placing the first
queen, which can be represented by:

f(x) =

∫ x

0

1

1− p(x)
dx (1)

Where f(x) is the number of steps to placing the first queen
and p(x) is the probability that a random queen on column z
is attacked by some previously placed queen to the left. The
probability (p1(x)) that a random column x is attacked by a
previously placed queen can be calculated by the following
equation:

p1(z) = 2 ∗
∫ x

0

y + x− yxdy +

∫ 1−x

x

2x− 2x2dy (2)

Which equals

2x− 2x2 + x3 (3)

Finally, the number of steps needed to place the final queen
can be expressed by the equation below:

P = 8 ∗
∫ 0.5

0

∫ x

0

1− x+ x2 + y − y2dydx (4)

They used Efficient Local Search and they found the average
run time for a 104 board to be 0.1 seconds, for a 105 board
to be 1.1 seconds, for a 2 ∗ 106 board to be 17.0 seconds, and
for a 3 ∗ 106 board to be 54.7 seconds [2]. This proves that
the N Queens problem can be solved with a very large board
in a reasonable amount of time.

In ”A New Solution for N-Queens Problem using Blind Ap-
proaches: DFS and BFS Algorithms,” the authors investigate
the N Queens problem with BFS and DFS searches[3]. Their
results are a bit slower than ours are. They solved a 9 queen
board in 276 seconds, while we solved it in 11.09 seconds
[3]. The big difference lies in the 10x10 board. It took them
7149 seconds to solve the puzzle, while it only took us 54.06
seconds. However, they did show that DFS is much faster
than BFS which makes sense. With a DFS search branches
are explored until the solution is found, whereas with BFS,
the levels are gone down one at a time, and the number of
nodes to keep track of grows almost exponentially. BFS also
takes up more memory as it has to remember more nodes than
DFS does.

III. EXPERIMENT METHODS

In order to see which algorithm worked best for each puzzle
we ran a series of tests on both algorithms with both problems.
To test this, we started with a small board and increased the
size until the program could no longer run in a reasonable
amount of time or was killed by the system for using too
much memory. The following data was collected: how much
memory the program was using, the amount of time it took
for the program to run, and the amount of the CPU allocation
we were given the process was using. To actually run the
experiments and log the results, we wrote a bash script that
ran the python calls and stored the output of the program and
results of the test to a file that was named according to which
algorithm and puzzle was being solved. For example, the name
of a Binary search on an N Queens board of size 5 is:

output_bn05.txt

A sample of that script can be seen below:

{ date ;} >> output_bn05.txt
{ /usr/bin/time python3 pt2solver.py bfs\

nqueens 5 ; } 2>> output_bn05.txt
{ printf "\n" ;} >> output_bn05.txt

//The slash after bfs is indicating a
//new line that has to be put into the
//paper that is not in the actual code.
//The code snippet is too long to fit on
//in the paragraph.

A sample output of the experiments can be seen below:

Mon Oct 24 14:29:00 CDT 2016



0.06user 0.00system 0:00.08elapsed 92%CPU\
(0avgtext+0avgdata 11396maxresident)k

0inputs+0outputs (0major+1341minor)pagefaults\
0swaps

The output starts by printing the date and time the test was
started. For the experiments that were not completed, we just
have the date and time the experiment was started. The next
line shows the time lapsed (in hh:mm:ss.ss), the peak CPU
usage, and the amount of memory usage. The memory usage
statistic used was the maxresident option which is given in
Kilobytes (k).

To test each algorithm we needed to create different boards
for the programs to be run on. For N Queens that was very
straight forward, only the board width and height and the
algorithm will solve the puzzle from there. For Cross Math,
different board sizes and different board puzzles must be
created. To determine the actual puzzles that were on the board
we ran a script that was given to us by the professor (Dr. Amy
Larson). This script takes in board size and then randomly
makes a solvable board for the algorithm to solve.

We expected our algorithms to take some time. Both BFS
and Genetic can take a long time to complete certain tasks.
However, we originally thought that the Genetic Algorithm
would solve both puzzles faster than BFS would, but in this
case it did not. BFS is expected to run in o(n2) time and the
Genetic Algorithm to run in O(O(Fitness)∗(O(mutation)+
O(crossover))) time.

The experiments were coded in Python3 and were running
on the College of Science and Engineering’s Vole and Atlas
servers at the University of Minnesota. These are both Linux
based servers. Vole is running on a Virtual 8-core Intel Xeon
CPU E5-2695 running at 2.30GHz with 36GB of ram and two
NVIDIA Grid K2 graphics cards. Atlas is running on an AMD
Opteron CPU 6272 running at 2.10GHz with 256GB of ram.

IV. EXPERIMENT RESULTS AND ANALYSIS

After running our script, we put the results into tables a
graphs that can be seen below.

Table for Cross Math:

Cross Math
Size CPU Usage(%) Time Memory

BFS 1x1 48 0.12 11232
BFS 2x2 43 0.14 11084
BFS 3x3 62 0.08 11236
BFS 4x4 88 60 86480
BFS 5x5 65 14:01:15 9502868

Genetic 1x1 64 0.05 11176
Genetic 2x2 80 0.06 11156
Genetic 3x3 72 0.1 11224
Genetic 4x4 89 2568 269348
Genetic 5x5 65 14:01:01 380124

AC3 2x2 82 0.05 10832
AC3 3x3 87 0.06 12720
AC3 4x4 96 0.48 12624
AC3 5x5 99 148 12712

Table for N Queens:

N Queens
Size CPU Usage(%) Time Memory

BFS 4x4 40 0.12 11192
BFS 5x5 61 0.11 11228
BFS 6x6 76 0.18 11284
BFS 7x7 76 0.57 11300
BFS 8x8 83 2.19 11640
BFS 9x9 83 11.09 13212

BFS 10x10 91 54.06 21540
Genetic 4x4 44 0.12 11240
Genetic 5x5 77 0.1 11456
Genetic 6x6 65 0.08 11328
Genetic 7x7 59 0.55 11692
Genetic 8x8 87 23.47 66068
Genetic 9x9 91 22.34 66716

Genetic 10x10 87 1584.7 3642732

In the Cross Math table, BFS 5x5 and Genetic 5x5 are
crossed off. That is because we let the program run overnight
and the system shut it down. The last data point that we
got was around 14 hours for both algorithms. We believe
the system shut us down because we used up too much
memory and ran out of our allotment of memory. Below there
are graphs comparing runtime, CPU usage and Memory -
providing a graphical comparison of the data.



Fig. 1. Graph of BFS Data for Cross Math

Fig. 2. Graph of BFS Data for Cross Math

As seen in the data and graphs above (and some below),
BFS has the slight advantage in both of the puzzles (Cross
Math and N Queens). This is not it what is supposed to
happen. The reason that genetic algorithms exist is so they can
mutate based on the current population and make the pool of
options smaller. In our case, it seemed as if at some points the
population of our algorithm actually got bigger.

Fig. 3. Graph of BFS Data for Cross Math

Fig. 4. Graph of BFS Data for Cross Math

We could have fixed this by setting a max population size.
This might contribute to why our genetic times were so much
larger when the board sizes got larger - the populations grew
almost exponentially. In theory, the genetic algorithm - on
average will run much faster than a BFS search, because the
BFS doesn’t have a heuristic to prune unwanted results. What
this shows is that our heuristic isn’t pruning enough.

BFS does have one advantage over Genetic Algorithms: it
is consistent. When run multiple times over the same puzzle,
BFS should return in the same amount of time every time. With
a Genetic Algorithm it could vary each time, based on how
the program mutates. If it mutates in a way that is favorable
to the program, it will decrease the run time of the algorithm.
If it doesn’t mutate in a favorable way, it will increase the run
time.

AC3’s results were not the same as the ones above. While
we did measure the run time, CPU usage, and Memory usage
we also measured success rate, which can be seen in the table
below:

AC3 Success Rate on Cross Math
Board Size Successes Failures

2x2 5 45
3x3 36 14
4x4 22 18
5x5 0 50

What this data shows is the amount of times the algorithm
completely solved a problem. It would only ”solve” a problem
if there was only one solution to the puzzle. Because it is
hard and rare for puzzles to have only one answer, AC3 fails
quite often - as seen in the table above. It seemed to be quite
effective for our 3x3 and 4x4 tests, but for 2x2 and 5x5 tests it
did quite poorly. For the 2x2 it failed most of the time because
it is quite difficult to make a puzzle with only one solution and
have it still be a valid puzzle. For the 5x5 puzzles there are so
many different combinations that it is almost impossible for
AC3 to solve them (which is seen in the data above). Because



of this, we decided not to test a 6x6 Cross Math puzzle; it
would have been too large for AC3 to solve reliably. It also
would have taken much longer to run as there are quite a bit
more possibilities for solved puzzles.

What this shows is that AC3 is not a very efficient search
algorithm for problems that have multiple solutions. For prob-
lems that have a single solution (generally) like Sudoku, it
would be perfect because of its speed. For puzzles that have
multiple solutions, the AC3 algorithm would be great as a pre-
processor for other search algorithms that could actually solve
the problem. AC3 would reduce the population size immensely
allowing another algorithm to run much quicker than you could
before. If the remaining population was put into BFS, it would
greatly reduce the amount of time it would take for BFS to
finish.

V. CONCLUSION AND FUTURE WORK

After running our experiments we found that our results for
the Genetic Algorithm did not line up with the theory. We think
that this is because of how we programmed the algorithm and
heuristic. After analysis, we discovered that our population
size was increasing instead of decreasing. This was due to an
inefficiently written heuristic and solving algorithms.

BFS on the other hand worked the way we expected it to.
It was able to complete its searches in a reasonable amount of
time and didn’t rely on a heuristic to try to make it run faster
(or slower if the heuristic isn’t done properly). This served as
our benchmark for comparing the other types of algorithms
because this doesn’t have anything to modify it’s population.
This is essentially a brute force method of solving the puzzle.

Arc Consistency-3 worked as we expected it to for Cross
Math. We were not able to put N Queens through AC3 because
it does not have a single solution. Problems that don’t have a
single solution are unsolvable through AC3. While we were
only able to get AC3 to fully solve smaller puzzles, it is a
great way to quickly reduce the population size to put into the
more extensive search algorithms.

Future work for this project will be to make the algorithm
and heuristic for the Genetic Algorithm better and more
efficient. We also plan to do more trials over a larger data
set (ie, larger boards), and plan to run those tests multiple
times to get an average for all of our stats. Another avenue
we could take would be combining AC3 with another search
algorithm. The purpose of this would be to see if reducing the
initial population size would reduce the run time of the overall
search algorithm.

ACKNOWLEDGMENTS

The author would like to thank Alex Oelke, Lane Scherber,
and Ryan Reding who were in the group from which the data
was collected. A special thanks also goes to Elise Lohmann
for proofing the paper and fixing the many grammatical errors
that this paper had.

REFERENCES

[1] Ayad M.Turkyl and Mohd Sharifuddin Ahmad ”Using Genetic Algo-
rithm for Solving N -Queens Problem.”, University of Anbar,Iraq.

[2] Rok SosiE, Member, IEEE, and Jun Gu, Senior Member, IEEE.
”Efficient Local Search with Conflict Minimization: A Case Study of
the n-Queens Problem”

[3] Farhad Soleimanian Gharehchopogh, Bahareh Seyyedi, and Golriz
Feyzipour. ”A New Solution for N-Queens Problem using Blind
Approaches: DFS and BFS Algorithms”

[4] Introduction To Algorithms


